Germanischer Lloyd

Technical opportunities to reduce emissions from shipping

Torsten Mundt, Head of Group Environmental Services, Strategic Research and Development

Content

- some background on Emissions from ships
- Emission substances
- methods to combat against emission substances
- conclusions

principal emissions from ships

Emissions to Air from Internal Combustion Engines

Combustion of Diesel Oil in an Internal Combustion Engine results in production of the following pollutants:

- Nitrogen Oxide (NO_x)
- Carbon Monoxide (CO)
- Hydrocarbons (HC)
- Sulphur Oxides (SO_x)
- Particulate Matter (PM)

Total Mass Emission

Technical principles to reduce Emissions

Methods for the reduction of pollutant emissions from Marine Diesel engines:

- pre combustion
 - ⇒ fuel-/charge air treatment
- Primary
 - ⇒ engine internal measures
- Secondary
 - ⇒ exhaust gas after treatment
- ⇒ alternative fuels (switch of combustion process)

Emission substances and reduction opportunities

NO_{x}

- engine internal (injection timing, Miller timing, two stage turbo charging, ...)
- wet technologies (emulsion, direct water, HAM)
- after treatment via SCR (restricted sulphur content)

SO_{x}

- solely depending on sulphur fuel content
 - ⇒ use of sulphur reduced fuel necessary
- after treatment via scrubbing (dry / wet -closed and open loop technology -)

PM

- amount depending on several circumstances (Sulphur, operating condition, load...)
- no after treatment possible / available for international shipping (HFO)

HC's, CO (because auf Diesel process few emissions and fulfills requirements)

NO_x reduction opportunities

(1/2)

NO_x reduction opportunities

(2/2)

Selective Catalytic Reduction (SCR):

Effectiveness of NO_x reduction opportunities

Potential of NO_x reduction technologies

SO_x and reduction opportunities

(1/2)

Wet scrubber system (closed loop) on MV Suula

Source: Wärtsilä

SO_x and reduction opportunities

(2/2)

Dry scrubber system on MV Timbus

Source: Couple Systems

basics on PM emissions

PM is a mixture of solid and liquid material

- carbon particles
- hydrocarbons
- inorganic matter
 - ⇒ causing considerable health damage

Influencing factors (among others) **are**:

- Sulphur content of the fuel
- Air to Fuel ratio
- Turbulence
- Injection Pressure in Diesel Engines
- Maintenance condition of the injection and air supply equipment

Effects of Sulphur Content on Particulate Matter (PM)

Particulate Matter of a 2-stroke Diesel Engine on a test bed at 100% Load

Remarks concerning Technical Safety

Mandatory requirements:

- SOLAS Convention and
- Class Rules
 - ⇒ safety is of utmost priority!

Safe ship operation means:

⇒ Protection of the environment

New GL Rules 2010, 2.N "Exhaust Gas Cleaning Systems"

Example concerning Technical Safety

Clogging of Catalyst block due to bad urea quality

Comparison of Emission Reduction Capabilities

	Internal Measures	FWE	HAM	SCR	Gas Fuelled Engines
NO _x	20-40%	20-30%	40(-65)%	80-85%	85% in Gas Mode
CO ₂	^	-	-	^	•
PM	-	•	-	-	•
Smoke	-	-	^	-	•
SO _x	-	-	-	-	•
Others	-	-	-	Ammonia slip!	CH ₄ - slip

Conclusion

Emission reduction means doing efforts

- needs investment
- should be tested and proven (before mandatory required)
- is not CO₂ neutral
- ...

Emission reduction must be solved under an holistic approach. Maintaining a holistic view on the ship's energy conversion system will lead to efficient and environmentally friendly ship operation.

Thank you for your kind attention.

Torsten.Mundt@GL-Group.com